Thermo-sensitive ε-polylysine-heparin-poloxamer hydrogel-encapsulated BMSCs promote endometrial regeneration
Han R, Zhou H, Liang X, He S, Sun X, Guan Y, Song Y
Endometrium plays a key role in embryo implantation and maintenance of pregnancy. However, to repair endometrial injury is still a challenge. In recent years, hydrogel materials have been widely used as effective support matrices to prevent intrauterine adhesions after endometrial injury. They can also be used as preparation scaffolds for encapsulating MSCs and certain therapeutic drugs. This study aimed to develop a preparation scaffold with high tissue affinity, high viscoelasticity and controlled release for repair of endometrial injury. The scaffold utilized heparin poloxamer (HP) as the matrix material and ε-polylysine (EPL) as the functional excipient to prepare a hydrogel that is suitable for endometrial adhesion and further encapsulate BMSCs. Furthermore, a strategy of the thermo-sensitive EPL-HP hydrogel-encapsulated BMSCs were used for better homing of BMSC after transplantation into the rat endometrial injury model, so as to exert the potential of endometrial regeneration by activating Nrf2 to regulate SDF-1/CXCR4 axis.
© 2025 The Authors.
Materials today. Bio, 2025-04-03