Improvement of deep learning-based dose conversion accuracy to a Monte Carlo algorithm in proton beam therapy for head and neck cancers

This study is aimed to clarify the effectiveness of the image-rotation technique and zooming augmentation to improve the accuracy of the deep learning (DL)-based dose conversion from pencil beam (PB) to Monte Carlo (MC) in proton beam therapy (PBT). We adapted 85 patients with head and neck cancers. The patient dataset was randomly divided into 101 plans (334 beams) for training/validation and 11 plans (34 beams) for testing. Further, we trained a DL model that inputs a computed tomography (CT) image and the PB dose in a single-proton field and outputs the MC dose, applying the image-rotation technique and zooming augmentation. We evaluated the DL-based dose conversion accuracy in a single-proton field. The average γ-passing rates (a criterion of 3%/3 mm) were 80.6 ± 6.6% for the PB dose, 87.6 ± 6.0% for the baseline model, 92.1 ± 4.7% for the image-rotation model, and 93.0 ± 5.2% for the data-augmentation model, respectively. Moreover, the average range differences for R90 were - 1.5 ± 3.6% in the PB dose, 0.2 ± 2.3% in the baseline model, -0.5 ± 1.2% in the image-rotation model, and - 0.5 ± 1.1% in the data-augmentation model, respectively. The doses as well as ranges were improved by the image-rotation technique and zooming augmentation. The image-rotation technique and zooming augmentation greatly improved the DL-based dose conversion accuracy from the PB to the MC. These techniques can be powerful tools for improving the DL-based dose calculation accuracy in PBT.

© The Author(s) 2025. Published by Oxford University Press on behalf of The Japanese Radiation Research Society and Japanese Society for Radiation Oncology.
Journal of radiation research, 2025-04-25