Deep learning enables fast and accurate quantification of MRI-guided near-infrared spectral tomography for breast cancer diagnosis
Feng J, Tang Y, Lin S, Jiang S, Xu J, Zhang W, Geng M, Dang Y, Wei C, Li Z, Sun Z, Jia K, Pogue BW, Paulsen KD
The utilization of magnetic resonance (MR) im-aging to guide near-infrared spectral tomography (NIRST) shows significant potential for improving the specificity and sensitivity of breast cancer diagnosis. However, the ef-ficiency and accuracy of NIRST image reconstruction have been limited by the complexities of light propagation mod-eling and MRI image segmentation. To address these chal-lenges, we developed and evaluated a deep learning-based approach for MR-guided 3D NIRST image reconstruction (DL-MRg-NIRST). Using a network trained on synthetic data, the DL-MRg-NIRST system reconstructed images from data acquired during 38 clinical imaging exams of pa-tients with breast abnormalities. Statistical analysis of the results demonstrated a sensitivity of 87.5%, a specificity of 92.9%, and a diagnostic accuracy of 89.5% in distinguishing pathologically defined benign from malignant lesions. Ad-ditionally, the combined use of MRI and DL-MRg-NIRST di-agnoses achieved an area under the receiver operating characteristic (ROC) curve of 0.98. Remarkably, the DL-MRg-NIRST image reconstruction process required only 1.4 seconds, significantly faster than state-of-the-art MR-guided NIRST methods.
IEEE transactions on medical imaging, 2025-05-31